a2 United States Patent

Ravi

US009483326B2

US 9,483,326 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) NON-INVASIVE UPGRADES OF SERVER

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

COMPONENTS IN CLOUD DEPLOYMENTS

Applicant:

Inventor:

Assignee:

Notice:

Appl. No.:

Filed:

Oracle International Corporation,
Redwood Shores, CA (US)

Kiran Vedula Venkata Naga Ravi,
Belmont, CA (US)

ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 26 days.
13/940,114

Jul. 11, 2013

2008/0183878 Al* 7/2008 Panda et al. 709/228

2010/0100970 Al 4/2010 Roy-Chowdhury et al.

2010/0162226 Al* 6/2010 Borissov et al. 717/173

2011/0289497 Al 11/2011 Kiaie et al.

2012/0102480 Al* 4/2012 Hopmann et al. 717/172
(Continued)

OTHER PUBLICATIONS

Oracle, “Oracle Knowledge for RightNow Integration Guide”,
Release 8.5.1, Document No. OKIC-RN185-01, May 2013.

(Continued)

Primary Examiner — Wing F Chan
Assistant Examiner — Joseph Maniwang

(74) Attorney, Agent, or Firm — Vista IP Law Group,
LLP; Peter C. Mei

Prior Publication Data

US 2015/0019698 Al Jan. 15, 2015
Int. CL.

GO6F 15/177 (2006.01)

GO6F 9/54 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

CPC . GO6F 9/54 (2013.01); GOG6F 8/65 (2013.01);
GO6F 8/67 (2013.01)

Field of Classification Search

CPC e GOGF 8/67

USPC 709/221

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

&7

ABSTRACT

A method, system, and computer program product for per-
forming software upgrades. The method serves to preserve
an inter-process connection between two endpoints during
patching operations. The method commences by suspending
at least some communication activity over the inter-process
connection while preserving one or more functioning states
of the inter-process connection. A patching facility produces
a patched endpoint (e.g., a software component) by perform-
ing a patch operation to one of the endpoints of the inter-
process connection while the at least some communication
activity remains suspended. After patching, a process recon-
figures at least some of the one or more preserved function-
ing states of the inter-process connection to connect to the
patched endpoint. When the preserved functioning states of
the inter-process connection have been restored, then com-
munication activity resumes over the connection, using the
patched endpoint. The inter-process communication can
comprise one or more connections between a server process
and a client process.

2003/0041094 Al* 2/2003 Laraetal. 709/201
2008/0071816 Al™* 3/2008 GIaycccocvverrirnnnen 707/101 20 Claims, 10 Drawing Sheets
100
Cloud Infrastructure 120 /
Host Hy 1014 Host Hp 101> Host Hy 101y T
Process Process Process %
[Tableq] [Table, Tablen]

Sumogate

H@
_

Executable
Instarce Ez 128>
Executable

Cloud Server 102 Instance Ey 12684

Process Tablecs CPy

Surrogate Qn

J 1|
I
=
X

Communication Path 133

4?_>

Surrogate Process|
Manager 130

<l
<]
2
©
J=d
e
5
D

<_{} L

Send
Instructions

Database Engine 117

Paused Process List 127 ’

Image to Host List 121 ’

=22 EH
Process to Port List 129 Host to Tenant List 123
=22 EH

Receive
Status

—)
Storage
Device 131

File System 135

US 9,483,326 B2
Page 2

(56)
U.S.

2012/0179822 Al
2012/0192172 Al
2013/0227689 Al
2014/0059529 Al*
2014/0101646 Al*
2014/0258382 Al

References Cited

PATENT DOCUMENTS

7/2012
7/2012
8/2013
2/2014
4/2014
9/2014

Grigsby et al.
Hansmann et al.
Pietrowicz et al.

Banavalikar et al. 717/170
Buzaski et al. 717/168
Tomer et al.

OTHER PUBLICATIONS

Non-final Office Action dated Jan. 14, 2015 for U.S. Appl. No.
13/940,107.

Notice of Allowance and Fee(s) due dated Jun. 5, 2015 for U.S.
Appl. No. 13/940,107.

* cited by examiner

US 9,483,326 B2

Sheet 1 of 10

Nov. 1, 2016

U.S. Patent

Gel Weyshg 9|14 d

|

tdS

tdO

0p 9yeboung

l9gT '3 ooue)isu|

€9z ¢3 ouessu|
3|qeINoaxg

8|qeNoexy

\J
7¢1 abe.olg

N—
/!

001

r

T€1 921neQ
abe.o)s

snjels
BAIDITY

SUOIONJISU|
puas

0t 1 Jebeuepy

$$900.1d Bmmotsz

(™\

$Og|ge] s$990.d

N /

ZOT 49A19S PNOID

TZT 1S 1ueUa] 0] 1SOH

Z I 1817 10d 0] ss&d0ld

A

A

.

T2V 1817 1s0H 01 abew|

N~

¢ 1817 $8220.d pashned

=

71} suibug sseqeleq

¢l yied uonediunuwo)d

J

0¢ 2Jnonaiseliu] pnojD

...)¢

Np 8jeboung

(

[

NTOT NH 1S0H

)<\;

< deboung

NajqeL
$8800.d

)

-0k

(

%)
=
3
Q
< I:
[}
I o
Craog
~_/
‘o|qeL
$8800.d $88201d
101 °H 1SOH 'TOT "H 1S0H

US 9,483,326 B2

Sheet 2 of 10

Nov. 1, 2016

U.S. Patent

¢ 9ld
e} 20 ‘o 00 -0
q \. 90z pasned aq 011usl|) e Aq pes suod
tdO A4D D

7?

GOZ Pesned aq 0] $8ssadold Jual|D

cd

N

rds " 'tds
¥0Z payoled aq 0] SS820.4 JaAlag

%

XH SH H cH b
/ \ / \ / \ €0¢ 18Ao97 1S0H

N N N

17 oew) Zg abew L3 abew I3 3

Z0Z 19Ae abew|

/_\

ueus|

L0Z (oA JuBUS L

00¢

U.S. Patent Nov. 1, 2016 Sheet 3 of 10 US 9,483,326 B2

300
\A [Select a tenant 302]

: 302

[Identify tenant’s host Hx and its respective image E; 304]

306

each SP,on

Process Loop 307 |

Retrieve the client process to be paused CPyx from
the process SP; 308

Port Loop 311

Identify ports [O] to be paused 312

v

Instruct server surrogate Q, to connect to [O] 314]

v

Pause client process CPx 316

v

|
[
[
|
|
|
[
|
|
|
: Wait 318
|
|
|
[
|
|
|
|
|

\. J

v

4 ™

Update the image corresponding to SP,; 320

\. J

v

4)

Instruct server surrogate Q, to (re)-connect to [O] 322

v

Resume process CPx 324

U.S. Patent Nov. 1, 2016 Sheet 4 of 10 US 9,483,326 B2

400

AW (START)
v

Receive a request to patch server
image 402

404

For each
SP,

Determine <host, port> pairs of SP; 405

. 7

v

Send block instructions for <host, port> of SP;,
SP, to corresponding surrogate 406

\. A

\

h 4

Query surrogate for status of connections given
in the <host, port> pairs of SP,;407

408

Any remaining
connection to <host, port>
on SP,?

[e]

[Wait 41

Patch SP,411

v

Restart SP; as new SP, 412

v

[Send unblock instructions (e.g., send a signal]
415) for <host, port> to surrogate 414

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 10 US 9,483,326 B2

5A00

START

Recelve a list of <host, port> palrs
for blocking connections 502

For Done
each port

Register interrupts with network
layer (TCP/IP) 508

:

Block connect-to-host call 512

!

Record process id, host, and
blocked port (e.g., to a file) 514

END

FIG. 5A

U.S. Patent Nov. 1, 2016 Sheet 6 of 10 US 9,483,326 B2

5B00

Receive a list of <host, port> pairs
for unblocking connections 552

For each
<host, port>
pair

Done

r Unblock Loop 551
Check status of blocked process
corresponding to this <host, port>
554
Continue to Still
loop through blocked

next pairs 2

[Unblock the blocked process 556]

FIG. 5B

U.S. Patent Nov. 1, 2016 Sheet 7 of 10 US 9,483,326 B2

600

N

4—[A computer processor to execute a set of program code instructions }/‘ 610

Program code for configuring a plurality of hosts in a computing cloud to
605 install an executable instance comprising a binary image of at least one 620
\ client program and at least one server program to be upgraded

4 A
Program code for modifying the binary image of at least one server

<—— program to be upgraded to create a modified server program binary [630
L image y

e)
Program code for identifying at least one initial server process running on

¢—— a host that is to be upgraded, the at least one server process serving at |~ 640
least one client program using an initial functioning connection port

Program code for preserving the functioning of the initial connection port
—— by migrating functions of the initial connection port to a surrogate server | 650

L process having a substitute connection port y

4)
Program code for pausing the execution of the client program while the

¢—— surrogate server process maintains the functioning of the substitute [660

connection port
\. J

e A

Program code for invoking an upgraded server process on the host after
installing the modified server program binary image onto the host

\§ J

—— 670

e A

Program code for migrating the functioning of the substitute connection
port to the upgraded server process

o S

4—(Program code for resuming the execution of the client program }/\ 690

FIG. 6

—— 680

US 9,483,326 B2

Sheet 8 of 10

Nov. 1, 2016

U.S. Patent

L '9Old

| | |
' ' 92.L
mwooo._qho?_wmuoumaa:wsuE_va“ooccoo\socme._mo._Qucw__oor_:oco_usooxwwcqu:wwm

ssao0.d Joalas papelbdn sy vel | |
01 Jod uonPBUUOD BINYISANS 8y} JO UOoUNy 8y} SleIBI AMM\ |

I
I Gl [eubig [

Hwo: ay) ojuo obew _ 442
Aeuiq weiboud Jaaias paipow ay Buljeisul Jayje 1soy ay) uo ssaooud Jaalas papelbdn ue ayoau| Q\\
| | |
1od Uo[YaULOD BIMISqNs ay) Jo Buluonoun; &\own
ay) suiejurew ssaooud Jaalas a1ebolins ayy ajiym welBo.id Jusio ayy JO UoN0axa ay) asned
|

1od uonosuuod a1nsans _
e Buiney sseoo.d Jeales a1eb0o1ins e 0} Jod UoiOsuuUoD AM“\MW_L
Bujuopouny [eiul ay3 o suoouny Buesbiw Aq uod
uoMVBUUOD Buluonouny [BIUl 8Y] JO UOKOUN) 8Y] 9AI8Sa.d I
I
1od uondsuuod Buluonouny jeniul ue Buisn weiboud Jualo auo 1se9| 18 Buinias $s9204d JanIaS AM\\o_L
2U0 1SBg| Je 8Y) ‘pepelBdn aq 0} sI Jey) 1S0Y B uo Buiuuns sse00id JOAISS [eNIUI SUO JSB| JB Aljuap|

| | |
mmmE_\Cmc_nEm&oa5>6wvauoEmmﬁmmbo;mbmhmaz &\\vﬁ _
_

aq 0} welboud Joa1as auo Jseg| e Jo abew Aleuiq Sy} pauipow e aI101S |

I I
popelbdn aq 01 welboid JaAles uo Jsed| 1e pue welboud Jualo suo 1Sea| 1e Jo abew) Aleulq rAYA
e Buisdwod aourisul 8|geInoaxa Ue |[B1sul 0] pnojo bunpndwod e uj sisoy Jo Aljelnid e ainbyuo)

(e1ebouins _ (¢ ebeioys _ (z0l Jaales
e “B9) “6-9) Tg0Z pnopo e <6-9)

€207 suibuz sulbug obelo)g V207 euibu3

°(07

004

U.S. Patent Nov. 1, 2016 Sheet 9 of 10 US 9,483,326 B2

800

N

1—(A computer processor to execute a set of program code instructions j_/‘ 810

Program code for suspending at least some communication activity
805 over the inter-process connection while preserving one or more 820
\ functioning states of the inter-process connection

Program code for producing a patched endpoint by performing a A
patch operation to one of the endpoints of the inter-process l_— 830
connection while the at least some communication activity remains
L suspended y,

4 N\
Program code for reconfiguring at least some of the one or more
preserved functioning states of the inter-process connection to [~ 840

connect to the patched endpoint

FIG. 8

US 9,483,326 B2

Sheet 10 of 10

Nov. 1, 2016

U.S. Patent

Ul SUONEIIUNWIWOYD
¢gl6

¥

6 'Old

756
asegele(
| ————x
5

@

716
aoeLal|
SUONEIIUNWIWOYD

206
(s)Jossan0.id

A A

1€6 |
£e6

aoeLaI| B1RQ

A

| 906 sng
A A A
Y Y A 4
016 606 806
9oI1A8(q obeloI1S WOY Aowa uile

Zl6
2018
ndu|

116
Aeidsig

006

US 9,483,326 B2

1
NON-INVASIVE UPGRADES OF SERVER
COMPONENTS IN CLOUD DEPLOYMENTS

RELATED APPLICATIONS

The present application is related to co-pending U.S.
patent application Ser. No. 13/925,484, entitled “FORMING
AN UPGRADE RECOMMENDATION IN A CLOUD
COMPUTING ENVIRONMENT?”, filed on even date here-
with, which is hereby incorporated by reference in its
entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD

The disclosure relates to the field of enterprise software
upgrades and more particularly to techniques for non-inva-
sive upgrades of server components in cloud deployments.

BACKGROUND

Cloud-based provision of infrastructure as a service
(IaaS), platforms as a service (PaaS), and software as a
service (SaaS) have gained in popularity. A cloud service
provider provisions any number of machines (e.g., having a
single processor or multiple processors or multi-core pro-
cessors, etc.) which machines can run an operating system
(e.g., Linux) directly on the hardware or the machines can
run virtual operating systems (e.g., using virtual machines,
possibly including a hypervisor). This flexibility is a boon to
cloud service providers and to their customers (e.g., tenants)
alike, yet the cloud model introduces new problems to be
solved. For example, while the cloud provisioning model
makes it easy to deploy software applications to many nodes
(e.g., tens, hundreds, thousands or more), the cloud provi-
sioning model does not address the tasks involved in upgrad-
ing those applications. Upgrading software in an instance is
generally accompanied by a blackout or brownout while the
software is being upgraded. While the cloud provisioning
model makes it convenient to deploy many nodes in a
cascade, the blackout or brownout experienced while the
software is being upgraded can become quite severe, espe-
cially in mission-critical deployments. Still worse, in a
deployed client-server situation where many (e.g., tens,
hundreds, thousands or more) clients are connected to a
single server, a blackout or brownout can affect many tens,
hundreds, thousands or more users.

What’s needed is a technique or techniques to minimize
or eliminate blackouts or brownouts while the cloud-de-
ployed server software is being upgraded. There is a need for
an improved approach since none of the legacy technologies
perform the herein-disclosed techniques for non-invasive
upgrades of server components in cloud deployments.

SUMMARY

The present disclosure provides an improved method,
system, and computer program product suited to address the

10

15

20

25

30

35

40

45

50

55

60

65

2

aforementioned issues with legacy approaches. More spe-
cifically, the present disclosure provides a detailed descrip-
tion of techniques used in methods, systems, and computer
program products for non-invasive upgrades of server com-
ponents in cloud deployments.

One embodiment comprises a computer implemented
method to preserve an inter-process connection between two
endpoints during patching operations by suspending at least
some communication activity over the inter-process connec-
tion while preserving one or more functioning states of the
inter-process connection. The method includes producing a
patched endpoint (e.g., a software component) by perform-
ing a patch operation to one of the endpoints of the inter-
process connection while the at least some communication
activity remains suspended, and then reconfiguring at least
some of the one or more preserved functioning states of the
inter-process connection to connect to the patched endpoint.
When the preserved functioning states of the inter-process
connection have been restored, then the method can resume
communication activity over the connection using the
patched endpoint. The inter-process connection can com-
prise a connection between a server process and a client
process, and the preserved functioning states of the inter-
process connection can comprise a keep-alive operation.

Some embodiments initiate the suspension of communi-
cation activity over the inter-process connection is per-
formed using a surrogate process, possibly responsive to a
signal or an indication initiated by a cloud tenant. The
suspension and restoration of communication activity over
the inter-process connection is performed using a process
table, which can be used by a surrogate process or a
surrogate process manager.

Further details of aspects, objectives, and advantages of
the disclosure are described below and in the detailed
description, drawings, and claims. Both the foregoing gen-
eral description of the background and the following
detailed description are exemplary and explanatory, and are
not intended to be limiting as to the scope of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an instance of a cloud deployment for
practicing non-invasive upgrades of server components in
cloud deployments, according to some embodiments.

FIG. 2 depicts a hierarchical organization of interrelated
entities for practicing non-invasive upgrades of server com-
ponents in cloud deployments, according to some embodi-
ments.

FIG. 3 is a pause-preserve-update-resume cycle as used in
systems for practicing non-invasive upgrades of server com-
ponents in cloud deployments, according to some embodi-
ments.

FIG. 4 is a flowchart showing a series of server image
patching operations as used in systems for practicing non-
invasive upgrades of server components in cloud deploy-
ments, according to some embodiments.

FIG. 5A is a flowchart showing a surrogate blocking
operation flow as used in systems for practicing non-inva-
sive upgrades of server components in cloud deployments,
according to some embodiments.

FIG. 5B is a flowchart showing a surrogate unblocking
operation flow as used in systems for practicing non-inva-
sive upgrades of server components in cloud deployments,
according to some embodiments.

FIG. 6 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments.

US 9,483,326 B2

3

FIG. 7 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments.

FIG. 8 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments.

FIG. 9 depicts a block diagram of an instance of a
computer system suitable for implementing an embodiment
of the present disclosure.

DETAILED DESCRIPTION

Embodiments of the present disclosure address solutions
for implementing non-invasive upgrades of server compo-
nents in cloud deployments. More particularly, disclosed
herein and in the accompanying figures are exemplary
environments, methods, and systems for implementing non-
invasive upgrades of server components in cloud deploy-
ments.

Overview

In the context of cloud provisioning (e.g., laaS, PaaA, or
SaaS), and more particularly, in a deployment of a client-
server model where many (e.g., tens, hundreds, thousands or
more) clients are connected to a single server, server reli-
ability/uptime is highly valued by users. In many enterprise
application situations, a server may service many client
connections, yet establishing client connections are fre-
quently expensive to create, and are often ‘fragile’ in that
they can be easily ‘broken’. For example, a connection that
becomes unused nevertheless consumes resources, and such
resources should be reclaimed if the connection moves into
disuse. Or, if a connection is initially established by a client
process, and that client process dies, the resources allocated
to that connection should be reclaimed. Operating systems
and virtual machines can autonomously tear-down unused
connections, however, as just indicated, establishing client
connections are frequently expensive to create and/or a
broken connection often precipitates unwanted effects (e.g.,
lost work, lost time, etc.).

Legacy techniques perform patching by (i) stopping the
running software, (ii) patching the software image, and (iii)
re-running the software with the patched software image.
Unfortunately, this legacy technique necessitates termina-
tion, tear-down, and re-establishing of client connections. In
some cases, a terminated connection can result in significant
user perturbations (e.g., an unwanted logout situation or a
process ‘freeze’, lost work, lost time, etc.).

Techniques are needed to preserve a connection even
while a patching operation is underway. In an exemplary
embodiment, connections are preserved even while a patch-
ing operation is underway by:

suspending communication activity over a connection

while preserving the integrity of the connection,
performing a patch operation to one of the endpoints of
the connection,

reconfiguring the connection to connect to the patched

endpoint, and

resuming communication activity over the connection

(possibly responsive to a signal).

DEFINITIONS

Some of the terms used in this description are defined
below for easy reference. The presented terms and their
respective definitions are not rigidly restricted to these
definitions—a term may be further defined by the term’s use
within this disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

The term “exemplary” is used herein to mean serving as
an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not neces-
sarily to be construed as preferred or advantageous over
other aspects or designs. Rather, use of the word
exemplary is intended to present concepts in a concrete
fashion.

As used in this application and the appended claims, the
term “or” is intended to mean an inclusive “or” rather
than an exclusive “or”. That is, unless specified other-
wise, or is clear from the context, “X employs A or B”
is intended to mean any of the natural inclusive per-
mutations. That is, if X employs A, X employs B, or X
employs both A and B, then “X employs A or B” is
satisfied under any of the foregoing instances.

The articles “a” and “an” as used in this application and
the appended claims should generally be construed to
mean “one or more” unless specified otherwise or is
clear from the context to be directed to a singular form.

Reference is now made in detail to certain embodiments.

The disclosed embodiments are not intended to be limiting
of the claims.

DESCRIPTIONS OF EXEMPLARY
EMBODIMENTS

FIG. 1 depicts an instance of a cloud deployment 100 for
practicing non-invasive upgrades of server components in
cloud deployments. As an option, the present cloud deploy-
ment 100 or any aspect thereof may be implemented in the
context of the architecture and functionality of the embodi-
ments described herein. Also, the cloud deployment 100 or
any aspect thereof may be implemented in any desired
environment.

As shown, the cloud infrastructure 120 comprises a plu-
rality of computing machines (e.g., host H, 101,, host H,
101,, host H, 101,, etc.) configured for communication
over a communication path 133 to a database engine 117 and
a cloud server 102. The cloud infrastructure can be config-
ured by an administrator and/or by a user 105. Further, a user
can access and configure the cloud server 102 via a graphical
user interface (e.g., GUI 107). Such a user might also
configure (e.g., initially configure and/or maintain) site
storage 137, which contains an executable instance (e.g.,
executable instance E1 126,, executable instance E2 126,
etc.). Such an instance image 126 comprises an instance
image copy of a client process (e.g., CP,) and an instance
image copy of a server process (e.g., SP,). Site storage 137
might also contain an initial copy of site information data
125.

Any host (e.g., host H; 101, host H, 101, host H,, 101,
etc.) can host software, execute processes, and maintain a
process table (e.g., process table,, process table,, process
table,, etc.).

Further, any host can communicate with any other host,
any host can communicate with the database engine, and any
host can communicate with the cloud server 102, which can
in turn maintain its own process table (e.g., process table s,
as shown).

More particularly, a host can run any number of occur-
rences of a client process agent (e.g., CP,;, CP,,, CP,,,,
CPy,, etc.) and a host can also run any number of occur-
rences of server processes (e.g., SP,,, SP,;, SP,,, etc.)
and/or other processes (e.g., surrogate Q,, surrogate Q,,
surrogate Q,, XP,,, etc.). Any or all of the foregoing
processes can be run on “bare metal”, or can be run under
an operating system or hypervisor. In exemplary embodi-

US 9,483,326 B2

5

ments, the surrogate processes running on each host com-
municates with the cloud server 102. Various particular
functions of the surrogate running on each host are discussed
below.

The database engine 117 serves as a repository for data,
which data can be stored and accessed as a relational
database relation, or as a file, or as a memory-resident data
structure. As shown, database engine 117 comprises a
paused process list 127, a process to port list 129, an image
to host list 121, and a host to tenant list 123.

In the particular embodiment of FIG. 1, an instance of
vendor-built surrogate (e.g., surrogate Q) is accessible over
the cloud infrastructure (e.g., over a WAN), and each host
runs its own copy of the surrogate (e.g., see surrogate Q,,
surrogate Q,, and surrogate Q). The surrogate program can
perform the following functions while practicing non-inva-
sive upgrades of server components:

Receive instructions to perform operations on a given port

or connection,

Intercept new connection requests,

Block or otherwise decline new connection requests, and

Keep track of blocked new connection requests.

The surrogate program can communicate with a cloud
server 102 using any protocol (e.g., HI'TP, SOAP, web
services, REST, socket interactions, etc.). In exemplary
deployments, such protocols are supported by the cloud
vendor; however, it is possible that certain communications
between the cloud server 102 and surrogate programs can be
performed using other protocols (e.g., including custom
protocols).

The cloud server 102 runs a surrogate process manager
130. The cloud server and any process it runs can access any
host and can access the storage device 131 either natively
(e.g., via a file protocol) or via a database engine connection,
possibly using a query language such as SQL. The surrogate
process manager 130 can access any aspect of any host. In
the event that the bare metal or hypervisor software does not
natively provide access to any particular aspect of the
corresponding host, the surrogate or surrogate process man-
ager 130 can be configured to provide the needed access
using any protocol.

Upgrade Overview

Following the embodiments within cloud deployment
100, non-invasive upgrades of server components can be
practiced. For example:

A cloud environment can be configured to comprise
physical machines (e.g., hosts H, ... H,,. .. Hy). Each
host is configured to run one or more programs or
processes. The status of each process is maintained in
a process table.

The process table may be integrated into the operating
system, or hypervisor, or virtual machine.

Each running process (e.g., CP or SP) is a running
instance of an executable from executable instance E, .
There may be more than one process that uses the same
executable. For example, the executable instance E,
(comprising CP,) is loaded on multiple hosts, and
initially, the loaded images are identical.

Each process CP and/or SP communicates with one or
more cloud servers 102 over the communication path
133 using any one or more possible schemes such as
TCP/IP sockets.

Each process CP or SP is run in the context of a cloud
tenant (e.g., a customer of the cloud vendor).

In one exemplary embodiment, a server process imple-

ments an enterprise software application (e.g., accounts
payable), and a client process handles user interface aspects.

10

20

25

30

40

45

50

55

6

A server process may support any number of clients via one
or more connections, and also a server process may connect
to a database engine 117.

The above organization is purely exemplary. Other orga-
nizations are reasonable and envisioned, one of which is
presented in FIG. 2.

FIG. 2 depicts a hierarchical organization 200 of interre-
lated entities for practicing non-invasive upgrades of server
components in cloud deployments. As an option, the present
hierarchical organization 200 or any aspect thereof may be
implemented in the context of the architecture and function-
ality of the embodiments described herein. Also, the hier-
archical organization 200 or any aspect thereof may be
implemented in any desired environment.

As shown, the highest level of the hierarchy is the tenant
(see tenant level 201). A tenant may specify any number of
images (see image level 202) which may be embodied as an
executable instance (e.g., executable instance E, 126,
executable instance E, 126, etc.). An image can be associ-
ated with any number of hosts (see host level 203), and an
image can be loaded onto any number of hosts (e.g., host H,
101,, host H, 101,, etc.) for execution. Continuing, a given
host can be executing any number of server processes (see
server processes to be patched 204). The server processes to
be patched are exemplified by the aforementioned SP,,,
SP,,, SP,,, etc., and a particular server process to be
patched can be in communication (e.g., over a connection)
with one or more client processes (see client processes to be
paused 205). A particular connection can use one or more
ports (see ports used by a client to be paused 206). As shown,
ports are designated as O, . . . O,

The foregoing hierarchical organization 200 is merely
illustrative, and other organizations are possible. More par-
ticularly, the operations and flows of the techniques
described herein do not rely on any particular organization.
Further, the aforementioned lists (e.g., paused process list
127, process to port list 129, image to host list 121, and host
to tenant list 123) can be conveniently stored as a list, or as
a relation, or in any data structure, including persistent
storage in a layout within a file system 135.

FIG. 3 is a pause-preserve-update-resume cycle 300 as
used in systems for practicing non-invasive upgrades of
server components in cloud deployments. As an option, the
present pause-preserve-update-resume cycle 300 or any
aspect thereof may be implemented in the context of the
architecture and functionality of the embodiments described
herein. Also, the pause-preserve-update-resume cycle 300 or
any aspect thereof may be implemented in any desired
environment.

As earlier indicated in the discussion of FIG. 2, the
highest level of the shown hierarchy is a tenant. For the
specific pause-preserve-update-resume cycle 300, a tenant
may have indicated the tenant’s desire for an upgrade of
certain applications (e.g., upgrade of the accounts payable
application or other applications embodied as a server
process), thus that tenant is selected (see operation 302), and
the images for that tenant are identified (e.g., using a lookup
from an image to host list 121), as well as the hosts for that
tenant are identified (e.g., using a lookup from a host to
tenant list 123). Given the identification of the tenant’s hosts
H, and the tenant’s images E, (see operation 304) the server
processes from within E, that are running on H, are identi-
fied, and for each server process SP; on H,, a process loop
is entered (see process loop 307).

The process loop commences by retrieving the client
processes to be paused (see operation 308). Such a retrieval
can be facilitated by the process table on host Hy (e.g.,

US 9,483,326 B2

7

process table,, process table,, process table,, etc.). Or, the
client processes CP. to be paused for a particular host can
be retrieved using a protocol implemented by any of the
server processes running on that particular host. Next, an
iterator 310 (e.g., see the loop test/increment) is formed, and
a port loop 311 is entered. Having the client processes CPy-
to be paused, a list of ports (e.g., ports corresponding to
connections used by processes CP, for connecting to server
process SP ;) can be formed, thus the port loop operation 312
serves to identify a list of ports [O] to be paused. A process
to port list 129 can be used in port loop operation 312, or any
other technique for retrieval or identification of a list of ports
to be paused can be employed. At this point in the pause-
preserve-update-resume cycle 300 it is known which pro-
cesses will be affected. That is, it is known which client
processes will be paused, and which surrogate processes will
be used as a proxy for the paused client processes, and which
server processes will be stopped then restarted with the
upgraded/patched images. It is further known or implied
which new server processes are to be initiated (e.g., using
the upgraded/patched images), and which paused client
processes are to be unpaused and resumed.

As earlier indicated, the connections between a client
process and a corresponding server process are to be held in
a live state, even while the server process to be patched is
down or in the middle of the process of being restarted or
otherwise not connected to its clients. As such, operations
within port loop 311 serve to instruct a surrogate Q; to
connect to the ports identified in port loop operation 312.
Once the surrogate Q; has successfully connected to the
ports identified in port loop operation (see operation 314),
the client process (or processes) for which the surrogate is
acting as a connection proxy can be paused (see operation
316). There is no need to kill the client process(es). More-
over, the remaining steps of the pause-preserve-update-
resume cycle 300 require relatively few cycles, and thus the
real-time consumed for executing the pause-preserve-up-
date-resume cycle 300 might be undetectable by any user of
the paused client processes and/or the upgraded server
processes.

The remaining steps of the pause-preserve-update-resume
cycle 300 include a wait state (see wait operation 318), an
operation to update the server process with the updated/
patched image (see operation 320), an operation to instruct
the server surrogate to reconnect to the ports of port list [O]
(see operation 322), and then to resume (e.g., unpause) the
client process CP,. (see operation 324).

The port loop 311 is repeated for each process SP ;on each
host Hy. Thus, all of the server processes in the cloud
deployment that are affected by the upgraded server image
for that tenant are upgraded—with minimal, possibly unde-
tectable brown-out during the upgrade.

FIG. 4 is a flowchart showing a series of server image
patching operations 400 as used in systems for practicing
non-invasive upgrades of server components in cloud
deployments. As an option, the present server image patch-
ing operations or any aspect thereof may be implemented in
the context of the architecture and functionality of the
embodiments described herein. Also, the server image
patching operations or any aspect thereof may be imple-
mented in any desired environment.

The context of cloud deployment 100 shows a cloud
server 102, which in turn includes a surrogate process
manager 130. The server image patching operations 400 can
be implemented as a feature of surrogate process manager
130. Specifically, surrogate process manager 130 can oper-
ate cooperatively with any one or more surrogate processes

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., surrogate Q,, surrogate Q,, surrogate Q,, etc.). The
shown server image patching operations 400 commences
upon receipt of a request to patch a particular server image
(see operation 402). Then an iterator 404 is established such
that all instances of a corresponding server process SP,
across all instances of hosts used by the tenant are subjected
to the upgrade. Thus, for each occurrence (on any host) of
server process SP , data pairs are formed to comprise a host
and a set of corresponding ports used by that server process
(see the <host, port> notation in operation 405). Having the
set of corresponding ports used by that server process (e.g.,
in <host, port> notation), then operation 406 serves to send
instructions to the surrogate of the given host of the <host,
port> pair, the instructions comprising one or more instruc-
tions to block any new requests for the port in the <host,
port> pair. For a short duration (e.g., until the conclusion of
server image patching operations 400) new connections are
refused. In some cases the connections are refused in a
manner that would cause the requestor to retry. In other
cases, the connection is acknowledged to the requestor, even
though the connection does not become operable until a later
moment. The behavior of the surrogate is further discussed
in FIGS. 5A and 5B, below.

The surrogate on a host can at least know the status of any
of the ports in the <host, port> pair, and can reply to a query
(see operation 407). So long as there remain open connec-
tions (e.g., connections that have not yet been taken over by
the surrogate) then the surrogate process manager 130 loops
through a wait state 410 and query to know the status of any
of the ports query (see operation 407). When there are no
further open connections (see decision 408), then processing
can proceed to apply the patch. Specifically, the patch for
SP,is applied. The application of a patch (see operation 411)
can be implemented in a variety of ways, possibly including
killing the unpatched version, then restarting SP , from the
patched image. Other possibilities include a particular
implementation of SP, whereby a signal is sent to SP,
whereafter SP, gracefully terminates without forcefully kill-
ing the connections, thus leaving the connections of the
surrogate intact.

After, the patch for SP; is applied, a new process SP; is
initiated (see operation 412). When a new process SP! has
reached a stable state, then the surrogate process manager
130 sends unblocking instructions to the surrogate (see
operation 414).

In some embodiments, a surrogate process blocks all
connections from Host Hi to SPj, and the surrogate process
may implement a data structure for queuing incoming con-
nection requests and releasing them once the surrogate
manager has sent an unblock instruction for SP,.

As earlier indicated, in the context of cloud deployment
100 the server image patching operations 400 can be imple-
mented as a feature or features of surrogate process manager
130, which can operate cooperatively with any one or more
surrogate processes (e.g., surrogate Q,, surrogate Q,, sur-
rogate Q,, etc.). In addition to the cooperation hereinabove
described, additional possibilities for cooperation are dis-
cussed hereunder as pertaining to FIG. 5A and FIG. 5B.

FIG. 5A is a flowchart showing a surrogate blocking
operation flow 5A00 as used in systems for practicing
non-invasive upgrades of server components in cloud
deployments. As an option, the present surrogate blocking
operation flow SA00 or any aspect thereof may be imple-
mented in the context of the architecture and functionality of
the embodiments described herein. Also, the surrogate
blocking operation flow 5A00 or any aspect thereof may be
implemented in any desired environment.

US 9,483,326 B2

9

As heretofore discussed, a surrogate process implements
the surrogate blocking operation flow 5A00. Specifically the
surrogate process receives ports via the <host, port> pairs
(see operation 502), and for each port (see iterator 506),
registers interrupts with the network layer (see operation
508). Incoming requests for connections are thus routed to
the surrogate, which in turn can block any incoming con-
nect-to-host requests (see operation 512). In some embodi-
ments of surrogate blocking operation flow 5A00, for any
requests that were blocked (see operation 512) the details of
the request and response are stored for later access. For
example, surrogate blocking operation flow 5A00 might
make a non-volatile (e.g., file) record of the id of the request,
the host, and the blocked port (see operation 514).

In another timeframe, the blocking operations imple-
mented in the surrogate blocking operation flow 5A00 can
be unblocked. Unblocking operations are now briefly dis-
cussed.

FIG. 5B is a flowchart showing a surrogate unblocking
operation flow 5B00 as used in systems for practicing
non-invasive upgrades of server components in cloud
deployments. As an option, the present surrogate unblocking
operation flow 5B00 or any aspect thereof may be imple-
mented in the context of the architecture and functionality of
the embodiments described herein. Also, the surrogate
unblocking operation flow 5B00 or any aspect thereof may
be implemented in any desired environment.

The surrogate unblocking operation flow 5B00 can com-
mence at any time. The unblocking operations commence
upon or after receipt of ports via <host, port> pairs corre-
sponding to desired unblocking operations (see operation
552). An iterator is formed (see decision 553) and for each
<host, port> pair, an unblock loop 551 is entered. Operations
within the loop (see operation 554) check the status of the
(formerly) blocked process SP,, and if the status of the
(formerly) blocked process SP, is still blocked (see decision
555), then an operation to unblock the blocked process is
executed (see operation 556). The loop repeats until all
processes corresponding to the <host, port> pairs have been
unblocked. When all processes corresponding to all of the
<host, port> pairs (see decision 553) have been unblocked,
the flow terminates.

Additional Embodiments of the Disclosure
Practical Applications

FIG. 6 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments. As an
option, the present system 600 may be implemented in the
context of the architecture and functionality of the embodi-
ments described herein. Of course, however, the system 600
or any operation therein may be carried out in any desired
environment.

As shown, system 600 comprises at least one processor
and at least one memory, the memory serving to store
program instructions corresponding to the operations of the
system. As shown, an operation can be implemented in
whole or in part using program instructions accessible by a
module. The modules are connected to a communication
path 605, and any operation can communicate with other
operations over communication path 605. The modules of
the system can, individually or in combination, perform
method operations within system 600. Any operations per-
formed within system 600 may be performed in any order
unless as may be specified in the claims. The embodiment of
FIG. 6 implements a portion of a computer system, shown
as system 600, comprising a computer processor to execute
a set of program code instructions (see module 610) and

10

15

20

25

30

35

40

45

50

55

60

65

10

modules for accessing memory to hold program code
instructions to perform: configuring a plurality of hosts in a
computing cloud to install an executable instance compris-
ing a binary image of at least one client program and at least
one server program to be upgraded (see module 620);
modifying the binary image of at least one server program
to be upgraded to create a modified server program binary
image (see module 630); identifying at least one initial
server process running on a host that is to be upgraded, the
at least one server process serving at least one client program
using an initial functioning connection port (see module
640); preserving the functioning of the initial functioning
connection port by migrating functions of the initial con-
nection port to a surrogate server process having a substitute
connection port (see module 650); pausing the execution of
the client program while the surrogate server process main-
tains the functioning of the substitute connection port (see
module 660); invoking an upgraded server process on the
host after installing the modified server program binary
image onto the host (see module 670); migrating the func-
tioning of the substitute connection port to the upgraded
server process (see module 680); and resuming the execu-
tion of the client program (see module 690).
FIG. 7 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments. As shown,
an engine 702, (e.g., a cloud server 102, or a signaling
engine) communicates with a storage engine 702, (e.g., site
storage 137), and also communicates with engine 702, (e.g.,
a surrogate), which communication uses path 705.
In an exemplary sequence of operations, the engines serve
to:
configure a plurality of hosts in a computing cloud to
install an executable instance comprising a binary
image of at least one client program and at least one
server program to be upgraded (see operation 712);

store a modified the binary image of at least one server
program to be upgraded to create a modified server
program binary image (see operation 714);

identify at least one initial server process running on a
host that is to be upgraded, the at least one server
process serving at least one client program using an
initial functioning connection port (see operation 716);

preserve the function of the initial functioning connection
port by migrating functions of the initial functioning
connection port to a surrogate server process having a
substitute connection port (see operation 718);

pause the execution of the client program while the
surrogate server process maintains the functioning of
the substitute connection port (see operation 720);

invoke an upgraded server process on the host after
installing the modified server program binary image
onto the host (see operation 722);

migrate the function of the substitute connection port to
the upgraded server process (see operation 724), pos-
sibly in response to receiving a signal from engine
702,; and then

resume the execution of the client program, now con-
nected with the upgraded server process (see operation
726).

FIG. 8 is a block diagram of a system for implementing
non-invasive upgrades of server components in cloud
deployments, according to some embodiments. As an
option, the present system 800 may be implemented in the
context of the architecture and functionality of the embodi-

US 9,483,326 B2

11

ments described herein. Of course, however, the system 800
or any operation therein may be carried out in any desired
environment.

As shown, system 800 comprises at least one processor
and at least one memory, the memory serving to store
program instructions corresponding to the operations of the
system. As shown, an operation can be implemented in
whole or in part using program instructions accessible by a
module. The modules are connected to a communication
path 805, and any operation can communicate with other
operations over communication path 805. The modules of
the system can, individually or in combination, perform
method operations within system 800. Any operations per-
formed within system 800 may be performed in any order
unless as may be specified in the claims. The embodiment of
FIG. 8 implements a portion of a computer system, shown
as system 800, comprising a computer processor to execute
a set of program code instructions (see module 810) and
modules for accessing memory to hold program code
instructions to perform: suspending at least some commu-
nication activity over the inter-process connection while
preserving one or more functioning states of the inter-
process connection (see module 820); producing a patched
endpoint by performing a patch operation to one of the
endpoints of the inter-process connection while the at least
some communication activity remains suspended (see mod-
ule 830); and reconfiguring at least some of the one or more
preserved functioning states of the inter-process connection
to connect to the patched endpoint (see module 840).
System Architecture Overview
Additional Practical Applications

FIG. 9 depicts a block diagram of an instance of a
computer system 900 suitable for implementing an embodi-
ment of the present disclosure. Computer system 900
includes a bus 906 or other communication mechanism for
communicating information, which interconnects subsys-
tems and devices, such as a processor 907, a system memory
908 (e.g., RAM), a static storage device (e.g., ROM 909), a
disk drive 910 (e.g., magnetic or optical), a data interface
933, a communication interface 914 (e.g., modem or Eth-
ernet card), a display 911 (e.g., CRT or LCD), input devices
912 (e.g., keyboard, cursor control), and an external data
repository 931.

According to one embodiment of the disclosure, computer
system 900 performs specific operations by processor 907
executing one or more sequences of one or more instructions
contained in system memory 908. Such instructions may be
read into system memory 908 from another computer read-
able/usable medium, such as a static storage device or a disk
drive 910. In alternative embodiments, hard-wired circuitry
may be used in place of or in combination with software
instructions to implement the disclosure. Thus, embodi-
ments of the disclosure are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination
of software or hardware that is used to implement all or part
of the disclosure.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 907 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 910. Volatile media includes
dynamic memory, such as system memory 908.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,

10

20

25

30

35

40

45

50

55

60

65

12

or any other magnetic medium; CD-ROM or any other
optical medium; punch cards, paper tape, or any other
physical medium with patterns of holes; RAM, PROM,
EPROM, FLASH-EPROM, or any other memory chip or
cartridge, or any other non-transitory medium from which a
computer can read data.
In an embodiment of the disclosure, execution of the
sequences of instructions to practice the disclosure is per-
formed by a single instance of the computer system 900.
According to certain embodiments of the disclosure, two or
more computer systems 900 coupled by a communications
link 915 (e.g., LAN, PTSN, or wireless network) may
perform the sequence of instructions required to practice the
disclosure in coordination with one another.
Computer system 900 may transmit and receive mes-
sages, data, and instructions, including programs (e.g., appli-
cation code), through communications link 915 and com-
munication interface 914. Received program code may be
executed by processor 907 as it is received, and/or stored in
disk drive 910 or other non-volatile storage for later execu-
tion. Computer system 900 may communicate through a
data interface 933 to a database 932 on an external data
repository 931. Amodule as used herein can be implemented
using any mix of any portions of the system memory 908,
and any extent of hard-wired circuitry including hard-wired
circuitry embodied as a processor 907.
In the foregoing specification, the disclosure has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the
disclosure. The specification and drawings are, accordingly,
to be regarded in an illustrative sense rather than restrictive
sense.
What is claimed is:
1. A computer implemented method to preserve an inter-
process connection between two endpoints during patching
operations, the method comprising:
suspending at least some communication activity for a
client process such that an execution of the client
process that corresponds to the communication activity
for the client process is paused, while preserving one or
more functioning states of the inter-process connection
at least by saving information about the execution of
the client process via the inter-process connection for
later access after a patch operation is performed;

implementing a wait state during which the execution of
the client process is paused, and one or more incoming
requests from the client process are blocked from
execution until at least the patch operation is complete;

producing a patched endpoint by performing the patch
operation to one of the endpoints of the inter-process
connection while the at least some communication
activity remains suspended; and

reconfiguring at least some of the one or more functioning

states, which have been preserved, of the inter-process
connection to connect to the patched endpoint.

2. The method of claim 1, further comprising resuming
communication activity over the connection, using the
patched endpoint.

3. The method of claim 1, wherein the inter-process
connection comprises a connection between a server process
and a client process.

US 9,483,326 B2

13

4. The method of claim 1, wherein preserving one or more
functioning states of the inter-process connection comprises
a keep-alive operation.
5. The method of claim 1, wherein the suspending at least
some communication activity over the inter-process connec-
tion is performed using a surrogate process.
6. The method of claim 5, wherein initiation of the
suspending is responsive to a cloud tenant indication.
7. The method of claim 1, wherein the suspending at least
some communication activity over the inter-process connec-
tion is performed using a process table.
8. The method of claim 1, wherein the reconfiguring at
least some of the one or more preserved functioning states
of the inter-process is performed using a surrogate process.
9. The method of claim 1, wherein a first endpoint of the
inter-process connection is a client process and a second
endpoint of the inter-process connection is a server process.
10. A computer program product embodied in a non-
transitory computer readable medium, the computer read-
able medium having stored thereon a sequence of instruc-
tions which, when executed by a processor causes the
processor to execute a set of acts to preserve an inter-process
connection between two endpoints during patching opera-
tions, the set of acts comprising:
suspending at least some communication activity for a
client process such that an execution of the client
process that corresponds to the communication activity
for the client process is paused, while preserving one or
more functioning states of the inter-process connection
by saving information about the execution of the client
process via the inter-process connection for later access
after a patch operation is performed,
implementing a wait state during which the execution of
the client process is paused, and one or more incoming
requests from the client process are blocked from
execution until at least the patch operation is complete;

producing a patched endpoint by performing the patch
operation to one of the endpoints of the inter-process
connection while the at least some communication
activity remains suspended; and

reconfiguring at least some of the one or more functioning

states, which have been preserved, of the inter-process
connection to connect to the patched endpoint.

11. The computer program product of claim 10, further
comprising instructions for resuming communication activ-
ity over the connection, using the patched endpoint.

12. The computer program product of claim 10, wherein
the inter-process connection comprises a connection
between a server process and a client process.

25

30

35

40

45

13. The computer program product of claim 10, wherein 50

preserving one or more functioning states of the inter-
process connection comprises a keep-alive operation.

14

14. The computer program product of claim 10, wherein
the suspending at least some communication activity over
the inter-process connection is performed using a surrogate
process.

15. The computer program product of claim 14, wherein
initiation of the suspending is responsive to a cloud tenant
indication.

16. The computer program product of claim 10, wherein
the suspending at least some communication activity over
the inter-process connection is performed using a process
table.

17. The computer program product of claim 10, wherein
the reconfiguring at least some of the one or more preserved
functioning states of the inter-process is performed using a
surrogate process.

18. The computer program product of claim 10, wherein
a first endpoint of the inter-process connection is a client
process and a second endpoint of the inter-process connec-
tion is a server process.

19. A computer system comprising infrastructure to pre-
serve an inter-process connection between two endpoints
during patching operations, comprising:

a processor-implemented host computer comprising a
process table, the host computer configured to suspend
at least some communication activity for a client pro-
cess such that an execution of the client process that
corresponds to the communication activity for the
client process is paused, while preserving one or more
functioning states of the inter-process connection at
least by saving information about the execution of the
client process via the inter-process connection for later
access after a patch operation is performed;

a processor-implemented cloud server comprising a pro-
cess managet, the cloud server configured to implement
a wait state during which the execution of the client
process is paused, and one or more incoming requests
from the client process are blocked from execution
until at least the patch operation is complete, to produce
a patched endpoint by performing the patch operation
to one of the endpoints of the inter-process connection
while the at least some communication activity remains
suspended, and to invoke reconfiguration of at least
some of the one or more functioning states, which have
been preserved, of the inter-process connection to con-
nect to the patched endpoint.

20. The computer system of claim 19, wherein the cloud
server is further configured to re-establish communication
activity over the connection, using the patched endpoint.

#* #* #* #* #*

